UNIVERSAL RELAXATION CHARACTERISTIC
OF POLYMER SYSTEMS

A. I, Isaev UDC 532,135:678

On the basis of test data pertaining to continuous and cyclic deformation of polymer systems,
a method is proposed for determining the maximum relaxation time, A universal relation is
derived for the maximum relaxation time as a function of the shear rate,

A basic characteristic of polymer systems is their relaxation spectrum, which determines all mani-
festations of their viscoelastic properties, The concept of a relaxation spectrum [1, 2] pertains to the lin-
ear range of mechanical behavior, where, for instance, the frequency characteristics of the dynamic modu-
lus components do not depend on the amplitude of deformations and where neither the effective viscosity g
= 7/ nor the coefficient of normal stresses ¢{ = ¢/27?%, both measured under steady-state conditions, de-
pend on the shear rate, At the same time, the properties of fluid polymers which appear as a viscosity
anomaly and as an anomalous shear rate characteristic of the coefficient of normal stresses are quite non-
linear. These effects, according to the phenomenological theory of thixotropicviscoelasticity {3, 4], may
be regarded as due to a weakening of the effect which long relaxation times have on the observed visco-
elastic characteristics — a weakening which becomes more significant as the deformation rate increases,
This theory has been verified experimentally under steady flow conditions [5-8] and then extended to the
case of large-amplitude harmonic vibrations [9, 101, where a sufficiently large amplitude of the deforma-
tion rate effects a change in the relaxation spectrum just as the shear rate does under steady-state condi-
tions.

In the light of this experimental evidence, there arises the question as to the extent to which the initial
relaxation spectrum H;(8) corresponding to small loads on a system (i.e., to the linear range of mechanical
behavior) determines the mechanical behavior in the nonlinear range, i.e,, as to which parameters of the
initial spectrum predetermine the changes in the material when the latter is subjected to increasing exter-
nal loads. This question ties in closely with the efforts by many authors [12-20] to develop methods of re-
presenting the nonlinear characteristics of polymer systems in universal terms., Some of these methods
were discussed in [21].

The beginning of research on this subject can apparently be traced to [13], where a molecular theory
was developed to interpret the flow of polymer systems and where the first guidelines were established for
generalizing the viscous characteristics of polymers. An important parameter is the relaxation time 6,
regarded as characteristic, defined on the basis of certain molecular propertiesof a polymer system, and
referred to the linear range of its mechanical behavior, According to this theory, the ratio 5/ nj of effec-
tive viscosity to initial (maximum) viscosity of a Newtonian fluid should be a function of the dimensionless
quantity 7 6, which is universal for all polymers regardless of their molecular weight and temperature.
Thus, it is proposed here to express the nonlinear properties of a system in terms of parameter §,, which
characterizes the properties of the original system. A universal viscosity curve was constructed in [14]
on the basis of this theory, with the value of parameter 9, determined by fitting — an important procedure
for a more accurate description of test data, Although this theory had been developed for monodisperse
polymers, the universal functional relation between n/n; andy@®,was obtained for polymers with a wide
molecular-weight distribution,
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Fig. 1. Maximum relaxation time ag a function of the shear rate: based on the relaxation
spectrum (1); based on steady flow modes (2).

Fig. 2. Universal relaxation characteristic for polymers, based on steady flow modes.
Solid line represents Eq. (15). Shaded area represents the scatter of test points for:
polyisobutylene [24] at 22°C, 40°C, 60°C, 80°C, 100°C, polystyrene solution in decalene
[22] at 25°C and volume concentration 18%, 29%, 38%, 46.6%, 57.3%, polybutadiene*(My,
=1.52+10°, My/Mp = 1.1) at 22°C, polybutadiene (Mw = 2.4 -10°, My /My = 1.1) solution
in methylnaphthalene {also according to the data obtained by Malkin and Berezhnaya) at
22°C and volume concentrations 10%, 30%, 50%, polymethylmethacrylate solutionin di-
ethylphthalate [7] at 30°C and weight concentration 5%, polyisobutylene solution in tetra-
lene [29] at 25°C and weight concentration 12%, polystyrene solution in toluene (7, 26] at
30°C and weight concentration 9.34%, 15%, 20.1%, polystyrene solution in chlorinated
diphenyl [28] at 27°C and weight concentration 13%, 16%, polydimethylsiloxane [27] (M
= 4.68-10%, Mw/Mp = 1.29; Mw = 9.71-10%, My/Mp = 1.18) at 20°C, polyethylene [6] at
150°C and 5; = 1.4-10%, 8.0°10%, 2.5-10° p.

The attempt in [18] to construct a universal viscosity curve for polystyrene melts with various mole-
cular-weight distributions has revealed that the curve in {14] is not universal in the case of a molecular-
weight variation., The results in [18] indicate that a universal viscosity curve can be constructed only for
a group of polymers with the same molecular-weight distribution. It is to be noted that a universal viscosity
relation is not sensgitive to changes in the degree of branching, This follows from [25], where the viscous
properties of both linear and branching monodispersed polystyrene have been analyzed with the aid of test
data from [18],

By introducing into the argument of 6, an empirical parameter which depends on the molecular-
weight distribution, the authors of {12] have succeeded in generalizing the viscous characteristics for poly-~
ethylene melts of diverse molecular structures and molecular-weight distributions, which must obviously
he viewed as a special case, considering that the shape of the flow curve changes when the molecular-weight
distribution changes,

An important method of generalizing the viscous characteristics of block polymers is by the tempera-
ture-invariant viscosity curve proposed in [19, 20]. It has been shown that, for industrial specimens of
polymers with wide molecular-weight distributions, such a generalization is possible by a 1/ nj versus
7 nj relation,

A molecular theory has been developed in [15, 16] pertaining to the flow of amorphous polymers,
where the parameter which characterizes a polymer system includes the characteristic relaxation time
at a zero shear rate. This parameter is of the same order of magnitude as the characteristic relaxation
time in the theory according to [11]. The ratio of the characteristic relaxation time at a given shear rate
to the characteristic relaxation time at a zero shear rate is equal to n/7nj. As will be shown here subse-
quently, however, this conclusion does not agree with test data. At high shear rates the theory yields a
relation between 7 and 7 /4 which agrees with the empirical equation proposed in [14]. A later study in
[15] has yielded n ~ 7 ~%/11, It follows from [15, 16] that a universal representation of the viscosity char-
acteristic is obtained in the same coordinates as in the theory according to {13].

* According to data obtained by Malkin and Berezhnaya at the Laboratory of Polymer Rheology, Institute
of Petrochemical Synthesis, Academy of Sciences of the USSR.
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Fig. 3. Viscosity ratio n/ ni as a function of the re-
ferred deformation rate yexinax: for polybutadiene (ac-
cording to the data obtained by Malkin and Berezhnaya)
(Mw = 1.52-10°, My /Mp = 1.1) at 22°C (1), for poly-
styrene solution in decalene [22] at 25°C and volume
concentration 57.3% (2), for polyisobutylene solution
in tetralene [29] at 25°C and weight concentration 12%

3.

In [L7] there have been developed concepts of a molecular cluster in concentrated polymer solutions
and of interaction between molecular segments which depends on the shear rate, The universal representa-
tion of viscosity in this theory is almost the same as in [13-16],

An independent method of evaluating the characteristic relaxation time has been proposed in [22],
where it has also been shown that by letting 6, = 73/Gj (Gj denoting the initial value of the viscoelasticity
modulus), i.e,, by expressing g, in terms of measured test quantities only, one can arrive at a temperature-
invariant and concentration-invariant generalization of the viscoelastic characteristics of polymer solutions
in n/7ny, 70, coordinates,

The main drawback of all these methods is that only viscous properties, without elastic properties,
are used as functions for generalizing the behavior of polymer systems. Elastic properties can also be
accounted for, however, if the maximum relaxation time is used which covers both kinds of properties.

The object of this here study was to find a method of calculating the maximum relaxation time from
the results of research on polymer systems under steady flow conditions at various shear rates and under
cyclic small-amplitude deformation, and then to generalize the test data published in the technical litera-
ture. The behavior of polymer systems will thus be generalized in terms of the relaxation spectrum and
its variation due to deformation,

At sufficiently low frequencies w of harmonic vibrations, as is well known, the imaginary component
G" and the real component G' of the dynamic modulus are proportional fo the frequency (G" ~ w) and to that
frequency squared (G' ~ «f) respectively. Therefore, there must be a maximum relaxation time o]"8% for
which Hij(9)=0at 6 > G}nax . Obviously, 93X may be regarded as the first relaxation characteristic of
polymer systems, We will show, first of all, how Glirnax can be expressed in terms of the initial Newtonian
viscosity nj and the initial normal stress coefficient £j. According to [1, 2, 23], these two quantities are

expressed in terms of Hj(g) as follows:

grmax
1.

Ny = Oj H; (8) db, 1)
oTax

E;= | Hi(0)6do. (2)
0

We will assume that 74, £i, and einax in Eqgs. (1) and (2) are functions of the temperature, The form of

function Hy(9) is then, by virtue of the temperature-frequency superposition principle [1], independent of
the temperature while n; and £; are functions of 9§n .
X .
It is easy to show now that the quantities 54, £, and Brina are all interrelated. In order to prove
this, we differentiate expressions (1) and (2) with respect fo ein :
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Fig, 4. Generalized relaxation characteristic of
polymer systems, based on cyclic small-amplitude
deformations, Solid line represents Eq. (16). Shaded
area represents the scatter of test points for: poly-
isobutylene NBS solution in decalene [30] at 25°C and
weight concentration 20%, polystyrene S-III {31] at
190°C, polyisobutylene solution in cetane [31] at 25°C
and weight concentration 2%, polymethylmethacrylate
[32] Mw = 1.91-10°, My,/Mn = 1,26; My = 5.21 .10°,
My /Mn = 1.39) at 220°C, mixture of polymethyl -
methacrylates [32] (My, = 1.43 -10%, Myw/My = 1.23and
My = 8.0110%, My/M, =1.59)at 220°C, polyisobuty-
lene (My = 8.4 -10°) solution in mineral oil [33] at
25°C and weight concentration 2%, polystyrene (My,

= 2.67+10% solution in arochlorine [34] at 25°C and
weight concentrations 10%, 20%, polystyrene [38] (My,
=5,18-10% at 200°C, polyisobutylene P-20 [9] at 22°C,
polyisobutylene (My, = 10°) solution in cetane [5] at
25°C and weight concentration 8.7%, 5.4%, polystyrene
[35] My = 5.81°10°, My /Mp = 1,065 Mw = 5.87 - 10,
My /Mp = 0.94; My = 8.9-10°, My /Mp = 1.01) at
160°C, polyisobutylene (Mw = 1.1 *10° solution in
mineral oil [37] at 25°C and weight concentration 49,

dTI i max
dﬂ?lax - Hi \( ei )’ (3)
dgl max tax
de.nila)\ MHi (81 ) ei - (4)
Dividing (4) by (3), we have
d§ i — er;ax' (5)
dnil
According to [24], ny, £j, and Gj are related by the simple equation
§; =M /Gy, (6)
Inserting ¢; from (6) into Eq. (5) and then differentiating, Weg easily obtain
2n; 28§
e
! Gy Nin ()

. ma : -
The use of the dimensionless deformation rate vy 6; * provides for a new way of generalizing the
viscoelastic characteristics of polymer systems in the nonlinear range,
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In order to proceed, we will first seek out any general laws according to which the relaxation proper-
ties of polymer systems vary as functions of the parameter «;elmx. It has been shown in [3-10] that an in-
crease in the load intensity on a system can be represented by a model where a higher deformation rate
causes the upper edge of the relaxation spectrum to shift farther, The spectrum edge is here the "maxi-
mum" (at a given shear rate) relaxation time, while the effective viscosity and the coefficient of normal

stress are defined as follows:

emax
n= | H,@®d, (8)
0
emax
E= | H,(0)ed. (9)
0
Let us differentiate (3) and (9) with respect to g
emax
dn oH,(0)
—— == e 0 max 1
87> f = ° + H, (87™), (10)
0
emax
dz OH,(6) 8
p— e e max max
deemax 5‘ ae:)ax d +He(68 )ee - (11)

0

Assuming that the derivative 9He(8)/ 965 %

pend on 93X, we can write

= 0, i.e., that the effective relaxation spectrum does not de-

45 _ guer, (12)
dn
It has been shown in many studies that, within a definite range of shear rates, o ~ 7¢ not only with-
in the linear range but also beyond its limits. At higher shear rates this relation ceases to be quadratic,
Consequently, in the general case we have

where f(y) is some function weakly dependent on the shear rate and equal to 1 /Gy at small values of y.
With the aid of (12) and (13) we obtain

o B
¢ N (14)
The dependence of eglax on the shear rate is shown in Fig. 1 for polyethylene, according to the dafa
in [9]. Here are also shown the values of 2¢ /7 at various shear rates, according to the data in [24]. Ac~-
cording to Fig. 1, the values determined on the basis of formula (14) and directly from the relaxation
spectra are in close agreement, Consequently, the effective relaxation spectrum does not depend on
The same conclusion is also drawn from the results which will be shown here subsequently.

egnax

The magnitude of the maximum relaxation time 633X can be found, if relations n(y) and £(y) are

known while ¢1"2% = lim g@**, A variation in the relaxation spectrum can be represented in a dimension-
. =0

less form: gP3%/91"?* ag a function of 767%%%, shown in Fig. 2, according to the test data in [6, 7, 22,
24, 26-29]. For comparison with this relation, in Fig. 3 is also shown n/n; as a function of v 6"3% for
the same polymers as in Fig. 2, In the latter case it is not possible to construct a single curve for poly-
mers with very different molecular-weight distributions, It follows directly from Figs. 2 and 3 that, gen-
erally, /7y = 05/ i"X_ We note, however, that for polymer systems 7 /ny = §AX/gMaX only up to
values of 7 at which the proportiomality o ~ 72 is exact within the range of nonlinear behavior,

An important fact revealed in Fig. 2 is the existence of a single relaxation spectrum characteristic
for polymer systems, This characteristic can be described by the following empirical equation:
1
14 0.3y07"
In conclusion, we note that from the analogy established between the frequency characteristics of
dynamic functions and the shear rate characteristics of stresses one can derive a formula analogous to
(15) on the basis of test data pertaining to eyclic small-amplitude deformations of polymers.

exeuax iel’;lax —_

(15)
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In order to construct such a frequency characteristic of dynamic functions, we will consider the func-
tion 2G'/G"w referred to ¢1"2* versus the dimensionless frequency w6 ~>. The choice of this function is
dictated by the requirement that 2G'/G"w — 6]~ a8 wdj > — 0. It is not difficult to show that this re-
quirement is indeed met, The relation between 2G'/ G"w@inax and wggnax, according to the test data in [3,
9, 30~-38], is shown in Fig. 4. The solid line on this diagram represents the equation

! i ¥} 1
2G' |G we?xzm- (16)

Obviously, the right-hand side here is the same as in Eq, (15), if w= . It follows therefore that
96 IG'o = O™ for @ =Y. (17

Equation (14) yields the following relation between §X3%, which characterizes the change in the re-
laxation spectrum due to a heavier load on the system, and the stress ratio

o/t = " . (18)

Formula (15) simplifies co&saigerably the calculation of normal stresses according to the known 7(4)
relation and the known value of ;. Formulas (15) and (18) combined do obviously fully define the rela-
tion ¢(y) when the relation 7(y) is known,

The results obtained here are valid for polymer systems such as thermoplastics as well as nonvul -
canized elastomers and their concentrates, but not for dilute solutions of low-molecular polymers with
viscoelastic properties,

NOTATION

n is the effective viscosity;

T is the shear stress;

v is the shear rate;

3 is the coefficient of normal stresses;

c is the first difference between normal stresses;

8 is the characteristic relaxation time;

£ is the maximum coefficient of normal stresses;

N is the maximum Newtonian viscosity;

6 Jinax is the maximum relaxation time in the initial relaxation spectrum;
Hi(9) is the initial relaxation spectrum;

g max is the maximum relaxation time in the effective relaxation spectrum;
He(9) is the effective relaxation spectrum;

8 is the relaxation time;

G’ is the elasticity modulus;

G" is the loss modulus;

Gi is the initial superelasticity modulus;

w is the angular frequency.
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